- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Levermann, Anders (2)
-
Edwards, Tamsin L. (1)
-
Garner, Gregory G. (1)
-
Gregory, Jonathan M. (1)
-
Hermans, Tim H. (1)
-
Jha, Shantenu (1)
-
Kopp, Robert E. (1)
-
Koubbe, George (1)
-
Kulp, Scott A. (1)
-
Kumar, Praveen (1)
-
Merzky, Andre (1)
-
Nowicki, Sophie (1)
-
Palmer, Matthew D. (1)
-
Rasmussen, D. J. (1)
-
Reedy, Alexander (1)
-
Slangen, Aimée B. (1)
-
Smith, Chris (1)
-
Strauss, Benjamin H. (1)
-
Turilli, Matteo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Future sea-level rise projections are characterized by both quantifiable uncertainty and unquantifiable structural uncertainty. Thorough scientific assessment of sea-level rise projections requires analysis of both dimensions of uncertainty. Probabilistic sea-level rise projections evaluate the quantifiable dimension of uncertainty; comparison of alternative probabilistic methods provides an indication of structural uncertainty. Here we describe the Framework for Assessing Changes To Sea-level (FACTS), a modular platform for characterizing different probability distributions for the drivers of sea-level change and their consequences for global mean, regional, and extreme sea-level change. We demonstrate its application by generating seven alternative probability distributions under multiple emissions scenarios for both future global mean sea-level change and future relative and extreme sea-level change at New York City. These distributions, closely aligned with those presented in the Intergovernmental Panel on Climate Change Sixth Assessment Report, emphasize the role of the Antarctic and Greenland ice sheets as drivers of structural uncertainty in sea-level change projections.more » « less
-
Strauss, Benjamin H.; Kulp, Scott A.; Rasmussen, D. J.; Levermann, Anders (, Environmental Research Letters)Abstract A portion of human-caused carbon dioxide emissions will stay in the atmosphere for hundreds of years, raising temperatures and sea levels globally. Most nations’ emissions-reduction policies and actions do not seem to reflect this long-term threat, as collectively they point toward widespread permanent inundation of many developed areas. Using state-of-the-art new global elevation and population data, we show here that, under high emissions scenarios leading to 4∘C warming and a median projected 8.9 m of global mean sea level rise within a roughly 200- to 2000-year envelope, at least 50 major cities, mostly in Asia, would need to defend against globally unprecedented levels of exposure, if feasible, or face partial to near-total extant area losses. Nationally, China, India, Indonesia, and Vietnam, global leaders in recent coal plant construction, have the largest contemporary populations occupying land below projected high tide lines, alongside Bangladesh. We employ this population-based metric as a rough index for the potential exposure of the largely immovable built environment embodying cultures and economies as they exist today. Based on median sea level projections, at least one large nation on every continent but Australia and Antarctica would face exceptionally high exposure: land home to at least one-tenth and up to two-thirds of current population falling below tideline. Many small island nations are threatened with near-total loss. The high tide line could encroach above land occupied by as much as 15% of the current global population (about one billion people). By contrast, meeting the most ambitious goals of the Paris Climate Agreement will likely reduce exposure by roughly half and may avoid globally unprecedented defense requirements for any coastal megacity exceeding a contemporary population of 10 million.more » « less
An official website of the United States government
